Xilinx Chipper UG078 User Manual

Virtex-4 LX/SX  
Prototype Platform  
User Guide  
UG078 (v1.2) May 24, 2006  
R
P/N 0402226-06  
 
Table of Contents  
Guide Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Package Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
CD-ROM Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Virtex-4 LX/SX Prototype Platform  
3
UG078 (v1.2) May 24, 2006  
 
R
4
Virtex-4 LX/SX Prototype Platform  
UG078 (v1.2) May 24, 2006  
 
R
Preface  
About This Guide  
This user guide describes the features and operation of the Virtex™-4 prototype platform  
and describes how to configure chains of FPGAs and serial PROMs.  
Guide Contents  
This manual contains one chapter:  
Additional Resources  
To find additional documentation, see the Xilinx website at:  
To search the Answer Database of silicon, software, and IP questions and answers, or to  
create a technical support WebCase, see the Xilinx website at:  
Conventions  
This document uses the following conventions. An example illustrates each convention.  
Typographical  
The following typographical conventions are used in this document:  
Convention  
Meaning or Use  
Example  
Messages, prompts, and  
program files that the system  
displays  
Courier font  
speed grade: - 100  
Literal commands that you enter  
in a syntactical statement  
Courier bold  
ngdbuild design_name  
Commands that you select from  
a menu  
File Open  
Helvetica bold  
Keyboard shortcuts  
Ctrl+C  
Virtex-4 LX/SX Prototype Platform  
5
UG078 (v1.2) May 24, 2006  
 
         
R
Preface: About This Guide  
Convention  
Meaning or Use  
Example  
Variables in a syntax statement  
for which you must supply  
values  
ngdbuild design_name  
See the Development System  
Reference Guide for more  
information.  
Italic font  
References to other manuals  
If a wire is drawn so that it  
overlaps the pin of a symbol, the  
two nets are not connected.  
Emphasis in text  
An optional entry or parameter.  
However, in bus specifications, ngdbuild [option_name]  
Square brackets [ ]  
Braces { }  
such as bus[7:0], they are  
design_name  
required.  
A list of items from which you  
must choose one or more  
lowpwr ={on|off}  
lowpwr ={on|off}  
Separates items in a list of  
choices  
Vertical bar  
|
IOB #1: Name = QOUT’  
IOB #2: Name = CLKIN’  
.
.
.
Vertical ellipsis  
.
.
.
Repetitive material that has  
been omitted  
Repetitive material that has  
been omitted  
allow block block_name  
loc1 loc2 ... locn;  
Horizontal ellipsis . . .  
Online Document  
The following conventions are used in this document:  
Convention  
Meaning or Use  
Example  
See the section “Additional  
Resources” for details.  
Cross-reference link to a location  
in the current document  
Blue text  
Refer to “Title Formats” in  
Chapter 1 for details.  
Cross-reference link to a location See Figure 2-5 in the Virtex-II  
Red text  
in another document  
Handbook.  
for the latest speed files.  
Blue, underlined text  
Hyperlink to a website (URL)  
6
Virtex-4 LX/SX Prototype Platform  
UG078 (v1.2) May 24, 2006  
 
 
R
Virtex-4 LX/SX Prototype Platform  
Package Contents  
Xilinx Virtex™-4 prototype platform board  
User guide  
Device vacuum tool  
Headers for test points  
CD-ROM  
One low-voltage, 14-pin, dual-inline package (DIP) crystal oscillator  
CD-ROM Contents  
User guide in PDF format  
Example designs  
These designs include the Verilog source code, user constraints files (*.ucf),  
documentation in PDF, and a readme.txt file  
Bitstream files (*.bit) for each part type supported by the board (Bitstream synthesized  
using Xilinx tools)  
Full schematics of the board in both PDF format and ViewDraw schematic format  
PC board layout in Pads PCB format  
Gerber files in *.pho and *.pdf for the PC board (There are many free or shareware  
Gerber file viewers available on the Web for viewing and printing these files)  
Introduction  
The Virtex-4 prototype platform and demonstration boards allow designers to investigate  
and experiment with the features of Virtex-4 series FPGAs. This user guide describes the  
features and operation of the Virtex-4 prototype platform, including how to configure  
chains of FPGAs and serial PROMs.  
Note: Prototype platforms are intended strictly for evaluating the functionality of Virtex-4 features  
and are not intended for A/C characterization or high-speed I/O evaluation.  
Virtex-4 LX/SX Prototype Platform  
7
UG078 (v1.2) May 24, 2006  
 
         
R
Introduction  
Features  
Independent power supply jacks for VCCINT, VCCO, and VCCAUX  
Selectable VCCO-enable pins for each SelectIO™ bank  
Configuration port for use with Parallel Cable III and Parallel Cable IV cables  
32 clock inputs  
4 differential clock pairs  
4 LVTTL-type oscillator sockets  
20 breakout clock pins  
Power indicator LEDs  
Onboard Platform Flash ISPROM (32 Mb) for configuration  
Onboard power supplies for the Platform Flash ISPROM  
JTAG port for reprogramming the XCF32P series reconfigurable ISPROM and the user  
FPGA, also known as the device under test (DUT)  
Upstream and downstream System ACE™ connectors and configuration interface  
connectors  
Onboard battery holder  
One low-voltage, 14-pin, DIP crystal oscillators  
The kit contains headers that can be soldered to the breakout area, if desired. These headers  
are useful with certain types of oscilloscope probes for either connecting function  
generators or wiring pins to the prototype area.  
The Virtex-4 prototype platform (the board) contains a DUT FPGA and one In-System  
Programmable Configuration PROM (ISPROM). The ISPROM can hold up to 33,554,432  
bits. The DUT can be configured either from the ISPROM or from the configuration ports  
(Parallel Cable III/IV cable).  
In addition to the ISPROM and the configuration ports, there are upstream connectors and  
downstream connectors. The upstream connectors can be connected to configure the DUT  
by using the System ACE configuration solution or by chaining another board. The  
downstream connectors can be used to connect to another board in a chain for serial  
configuration. A maximum of two boards can be chained together.  
8
Virtex-4 LX/SX Prototype Platform  
UG078 (v1.2) May 24, 2006  
 
 
R
Introduction  
Figure 1 shows a block diagram of the board.  
2x Diff Pair  
Clocks  
Upstream  
Interface  
Connector  
Upstream  
System ACE  
Interface  
2x  
SMA  
SMA  
LVTTL  
Connector  
Configuration  
Port  
To Test Points  
on All Pins  
Virtex-4 DUT  
LEDs  
PROGRAM  
User RESET  
VBATT  
DONE  
LED  
INIT  
LED  
Downstream  
System ACE  
Interface  
LVTTL  
2x  
SMA  
SMA  
Downstream  
Interface  
Connector  
Connector  
2x Diff Pair  
Clocks  
Power Bus and Switches  
5V Jack -or- 5V Brick  
VCCINT  
VCCO  
VCC Jack  
VCCO Jack  
VCCAUX Jack  
VCCAUX  
VCC3  
VCC1V8  
AVCC  
UG078_01_101204  
Figure 1: Virtex-4 LX/SX Prototype Platform Block Diagram  
Virtex-4 LX/SX Prototype Platform  
9
UG078 (v1.2) May 24, 2006  
 
 
R
Detailed Description  
Detailed Description  
The Virtex-4 prototype platform board is shown in Figure 2. Each feature is detailed in the  
numbered sections that follow.  
6a  
6c  
4
11  
10  
9
1
13  
3
2
19  
13  
13  
12  
13  
8
7
14  
17  
16  
5
18  
15  
6b  
6d  
UG078_02_101904  
Figure 2: Detailed Description of Virtex-4 LX/SX Prototype Platform Components  
1. Power Switch  
The board has an onboard power supply and an ON|OFF power switch. When lit, a green  
LED indicates power from the power brick connector or the 5V jack.  
On Position  
In the ON position, the power switch enables delivery of all power to the board by way of  
voltage regulators situated on the backside of the board. These regulators feed off a 5V  
external power brick or the 5V power supply jack.  
The voltage regulators deliver fixed voltages. Maximum current range for each supply will  
vary. Table 1, page 9 shows the maximum voltage and maximum current for each onboard  
power supply. If the current exceeds maximum ratings, use the power jacks to supply  
power to the DUT.  
10  
Virtex-4 LX/SX Prototype Platform  
UG078 (v1.2) May 24, 2006  
 
     
R
Detailed Description  
Table 1: Voltage Ranges  
Label Maximum Voltage  
VCCINT  
Maximum Current  
1.2V  
3.3V  
2.5V  
3.3V  
1.8V  
2.5V  
1A  
2A  
VCCO  
VCCAUX  
VCC  
1.5A  
2A  
VCC1V8  
AVCC  
1A  
25 mA  
Off Position  
In the OFF position, the power switch disables all modes of powering the DUT.  
Power Enable Jumpers  
For each power supply there are headers marked SUPPLY on one side and JACK on the  
other side. Appropriate placements of jumpers on these headers enables delivery of all  
power from either the onboard regulators or the three power supply jacks marked  
VCCINT, VCCO, and VCCAUX.  
2. Power Supply Jacks  
One method of delivering power to the DUT is by way of the power supply jacks. (Consult  
the Xilinx data book, http://www.xilinx.com/partinfo/datasheet.htm, for the maximum  
voltage rating for each device you are using.) The power supply jacks are:  
VCCINT  
Supplies voltage to the VCCINT of the DUT  
VCCO  
Supplies I/O voltages to the DUT  
Each bank can be powered from one of two sources (VCCO, VCCINT) by  
appropriate placement of jumpers on the header  
VCCAUX  
Supplies voltage to the VCCAUX DUT pins  
Virtex-4 LX/SX Prototype Platform  
11  
UG078 (v1.2) May 24, 2006  
 
 
R
Detailed Description  
3. Configuration Ports  
These headers can be used to connect a Parallel Cable III or Parallel Cable IV cable to the  
board (see Table 2) and support all Virtex-4 device configuration modes. See Table 3 for  
connecting the cables to the configuration ports and Figure 3 for setting up the JTAG chain  
on the board.  
Table 2: Serial Mode  
Configuration Port Header  
Parallel Cable III/IV Pins  
VCC3  
GND  
CCLK  
DONE  
DIN  
VCC  
GND  
CCLK  
D/P  
DIN  
PROG  
INIT  
PROG  
Table 3: JTAG Mode  
Configuration Port Header  
Parallel Cable IV Connector  
Parallel Cable III Pins  
Parallel Cable IV Pins  
VCC3V3  
GND  
TMS  
VCC  
GND  
TMS  
TDI  
VCC  
GND  
TMS  
TDI  
TDI  
TDO  
TCK  
TDO  
TCK  
TDO  
TCK  
INIT  
INIT  
UP  
DN  
TDI  
PROM  
TDO  
TMS  
TCK  
TDO  
TDI  
DUT  
TDO  
UG078_03_082404  
Figure 3: JTAG Chain Termination  
12  
Virtex-4 LX/SX Prototype Platform  
UG078 (v1.2) May 24, 2006  
 
       
R
Detailed Description  
4. JTAG Chain  
Jumper J17 provides the ability to have the Virtex-4 in the JTAG chain or remove it from the  
JTAG chain.  
Note: The Virtex-4 device must not be in the socket when detecting the ISPROM in the chain.  
5. JTAG Termination Jumper  
The DUT TDO pin can be jumpered to the TDO TERM pin or the downstream TDO pin.  
When another board is connected to the downstream System ACE connector or  
downstream interface connector, jumper the DUT TDO pin to the downstream TDO pin  
for serial chaining. The connection allows the DUT TDO pin to be connected to the next  
device in the chain.  
The TCK and TMS pins are parallel feedthrough connections from the upstream  
System ACE interface connector to the downstream System ACE interface connector and  
drive the TCK and TMS pins of the onboard PROM and the DUT.  
Note: The termination jumper must be in place on the last board in the chain to connect the TDO pin  
of the final device to the TDO feedback chain.  
Virtex-4 LX/SX Prototype Platform  
13  
UG078 (v1.2) May 24, 2006  
 
   
R
Detailed Description  
6a. Upstream System ACE Interface Connector  
The upstream System ACE interface connector, as shown in Figure 4, can be used to  
configure the DUT. Any JTAG configuration stream can source this connector. For  
example, a System ACE controller with a CompactFlash card can be used to generate very  
large JTAG streams for configuring multiple Virtex-4 prototype platforms using the  
downstream System ACE interface connector.  
GND  
UPSTREAM_TDO  
UPSTREAM_TDI  
GND  
GND  
UPSTREAM_TMS  
NC  
UPSTREAM_TCK  
GND  
VCC_TMP  
19 17 15 13 11 9  
7
5
6
3
4
1
2
20 18 16 14 12 10 8  
VCC_TMP  
VCC_TMP  
VCC_TMP  
VCC_TMP  
GND  
VCC3_EN  
VCC3_EN  
VCC3_EN  
VCC3_EN  
GND  
UG078_04_051004  
Figure 4: Upstream System ACE Interface Connector (20-Pin Female)  
6b. Downstream System ACE Interface Connector  
The downstream System ACE interface connector, as shown in Figure 5, is used to pass  
configuration information to a DUT in a downstream prototype platform board from  
sources such as a Parallel Cable III cable or an upstream System ACE interface connector.  
GND  
VCC_TMP  
VCC_TMP  
VCC_TMP  
VCC_TMP  
GND  
VCC3_EN  
VCC3_EN  
VCC3_EN  
VCC3_EN  
20 18 16 14 12 10 8  
6
5
4
3
2
1
19 17 15 13 11 9  
7
VCC_TMP  
GND  
DOWNSTREAM_TCK  
GND  
NC  
DOWNSTREAM_TMS  
GND  
DOWNSTREAM_TDI  
GND  
DOWNSTREAM_TDO  
UG078_05_051004  
Figure 5: Downstream System ACE Interface Connector (20-Pin Male)  
14  
Virtex-4 LX/SX Prototype Platform  
UG078 (v1.2) May 24, 2006  
 
       
R
Detailed Description  
6c. Upstream Interface Connector  
The upstream interface connector, as shown in Figure 6, is used to configure the DUT in  
select map or slave-serial mode. This connector can be sourced by a downstream interface  
connector of another prototype platform board.  
GND  
GND  
GND  
NC  
AFX_M2  
AFX_M1  
AFX_M0  
NC  
GND  
GND  
GND  
GND  
NC  
NC  
NC  
GND  
NC  
NC  
NC  
NC  
CS_B  
NC  
TMS  
TDI  
DIN  
D1  
TDO  
D2  
TCK  
D3  
NC  
D4  
NC  
D5  
NC  
D6  
DOUT_BUSY  
INIT  
D7  
DONE  
CCLK  
NC  
PROG  
RW_B  
UG027_06_051004  
Figure 6: Upstream Interface Connector (44-Pin Female)  
Virtex-4 LX/SX Prototype Platform  
15  
UG078 (v1.2) May 24, 2006  
 
   
R
Detailed Description  
6d. Downstream Interface Connector  
The downstream interface connector, as shown in Figure 7, passes serial configuration  
information to the DUT in the downstream prototype platform board.  
NC  
NC  
CLK  
PROG  
DONE  
INIT  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
TCK  
TDO  
NC  
DOWNSTREAM_TDI  
TMS  
DOUT_BUSY  
GND  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
UG027_07_051004  
Figure 7: Downstream Interface Connector (44-Pin Male)  
7. Prototyping Area  
The prototyping area accommodates 0.10-inch spaced ICs. The kit contains headers that  
can be soldered to the breakout area, if desired. Power and ground buses are located at the  
top and bottom edges, respectively, of the prototyping area.  
8. VCCO-Enable Supply Jumpers  
Virtex-4 series devices have 9 to 17 SelectIO banks, labeled 0 through 16, each with a  
VCCO-enable supply jumper. The VCCO-enable supply jumpers can connect each bank to  
one of the two onboard supplies, VCCINT or the VCCO supply. These jumpers must be  
installed for the Virtex-4 device to function normally.  
9. VBATT  
An onboard battery holder is connected to the VBATT pin of the DUT. If an external power  
supply is used, the associated jumper must be removed and instead use a 12 mm lithium  
coin battery (3V).  
16  
Virtex-4 LX/SX Prototype Platform  
UG078 (v1.2) May 24, 2006  
 
         
R
Detailed Description  
10. Oscillator Sockets  
The board has four crystal oscillator sockets, all wired for standard LVTTL-type oscillators.  
These sockets connect to the DUT clock pads as shown in Table 4 and Table 5. Onboard  
termination resistors can be changed by the user. The oscillator sockets accept both half-  
and full-sized oscillators and are powered by the DUT VCCO power supply.  
Table 4: Oscillator Socket Clock Pin Connections for SF363 and FF668  
SF363  
FF668  
Pin  
Number  
Pin  
Number  
Label  
OSC  
Clock Name  
Clock Name  
Socket  
Top 1  
IO_L1N_GCLK_CC_LC_3  
IO_L1P_GCLK_CC_LC_3  
IO_L1P_GCLK_CC_LC_4  
IO_L1N_GCLK_CC_LC_4  
A11  
B12  
IO_L1N_GCLK_CC_LC_3  
IO_L1P_GCLK_CC_LC_3  
IO_L1P_GCLK_CC_LC_4  
IO_L1N_GCLK_CC_LC_4  
B14  
B15  
OSC  
Socket  
Top 2  
OSC  
Socket  
Bottom 1  
W13  
W12  
AF12  
AE12  
OSC  
Socket  
Bottom 2  
Table 5: Oscillator Socket Clock Pin Connections for FF1148 and FF1513  
FF1148 FF1513  
Pin  
Number  
Pin  
Number  
Label  
Clock Name  
Clock Name  
OSC  
Socket  
Top 1  
IO_L1N_GCLK_CC_LC_3  
IO_L1P_GCLK_CC_LC_3  
IO_L1P_GCLK_CC_LC_4  
IO_L1N_GCLK_CC_LC_4  
G18  
F18  
IO_L1N_GCLK_CC_LC_3  
IO_L1P_GCLK_CC_LC_3  
IO_L1P_GCLK_CC_LC_4  
IO_L1N_GCLK_CC_LC_4  
N20  
P20  
OSC  
Socket  
Top 2  
OSC  
Socket  
Bottom 1  
AF18  
AE18  
AH20  
AH19  
OSC  
Socket  
Bottom 2  
Virtex-4 LX/SX Prototype Platform  
17  
UG078 (v1.2) May 24, 2006  
 
       
R
Detailed Description  
11. Differential Clock Inputs  
In addition to the oscillator sockets, there are eight 50Ω SMA connectors that allow  
connection to an external function generator. These connect to the DUT clock pads as  
shown in Table 6 and Table 7. They can also be used as differential clock inputs. The  
differential clock pairings (DIFFERENTIAL PAIRS) are as shown in the tables.  
Table 6: SMA Clock Pin Connections for SF363 and FF668  
SF363  
FF668  
Pin  
Number  
Pin  
Number  
Label  
Clock Name  
Clock Name  
N
P
IO_L8N_GC_LC_3  
B7  
A7  
IO_L8N_GC_LC_3  
C12  
C13  
IO_L8P_GC_LC_3  
IO_L8P_GC_LC_3  
N
P
IO_L2N_GC_VRP_LC_3  
IO_L2P_GC_VRN_LC_3  
IO_L2N_GC_LC_4  
B9  
IO_L2N_GC_VRP_LC_3  
IO_L2P_GC_VRN_LC_3  
IO_L2N_GC_LC_4  
A11  
A10  
W5  
Y5  
A12  
N
P
AB10  
AC10  
AD11  
AD12  
IO_L2P_GC_LC_4  
IO_L2P_GC_LC_4  
N
P
IO_L8N_GC_CC_LC_4  
IO_L8P_GC_CC_LC_4  
W8  
W9  
IO_L8N_GC_CC_LC_4  
IO_L8P_GC_CC_LC_4  
Table 7: SMA Clock Pin Connections for FF1148 and FF1513  
FF1148  
FF1513  
Pin  
Pin  
Number  
Label  
Clock Name  
Clock Name  
Number  
G16  
N
P
IO_L8N_GC_CC_LC_3  
IO_L8P_GC_CC_LC_3  
IO_L2N_GC_VRP_LC_3  
IO_L2P_GC_VRP_LC_3  
IO_L2N_GC_LC_4  
IO_L8N_GC_CC_LC_3  
IO_L8P_GC_CC_LC_3  
IO_L2N_GC_VRP_LC_3  
IO_L2P_GC_VRP_LC_3  
IO_L2N_GC_LC_4  
K21  
L21  
G17  
N
P
J17  
K19  
H17  
J19  
N
P
AF16  
AG16  
AH17  
AJ17  
AF18  
AF19  
AJ19  
AK19  
IO_L2P_GC_LC_4  
IO_L2P_GC_LC_4  
N
P
IO_L8N_GC_CC_LC_4  
IO_L8P_GC_CC_LC_4  
IO_L8N_GC_CC_LC_4  
IO_L8P_GC_CC_LC_4  
18  
Virtex-4 LX/SX Prototype Platform  
UG078 (v1.2) May 24, 2006  
 
         
R
Detailed Description  
12. DUT Socket  
The DUT socket contains the user FPGA, referred to as the device under test (DUT). The  
DUT must be oriented using the P1 indicator on the board.  
Caution! Failure to insert the device to the proper orientation can damage the device. To avoid  
pin damage, always use the vacuum tool provided when inserting or removing the Virtex-4  
device. When using BGA packages, do not apply pressure to the device while activating the  
socket. Doing so can damage the socket and/or the device.  
13. Pin Breakout  
The pin breakout area is used to monitor or apply signals to each of the DUT pins. Headers  
can be soldered to the breakout area to use with certain types of oscilloscope probes, for  
either connecting function generators or wiring pins to the pin breakout area. Clocks in the  
pin breakout area that connect to the DUT clock pads are shown in Table 8 and Table 9,  
Table 8: Breakout Clock Pin Connections for SF363 and FF668  
SF363  
FF668  
Pin  
Number  
Pin  
Number  
Label  
Clock Name  
Clock Name  
IO_L4P_GC_LC_3  
B10  
C10  
B13  
A13  
A8  
IO_L4P_GC_LC_3  
B13  
B12  
IO_L4N_GC_VREF_LC_3  
IO_L5P_GC_LC_3  
IO_L4N_GC_VREF_LC_3  
IO_L5P_GC_LC_3  
A16  
IO_L5N_GC_LC_3  
IO_L6P_GC_LC_3  
IO_L5N_GC_LC_3  
IO_L6P_GC_LC_3  
A15  
A10  
IO_L6N_GC_LC_3  
IO_L7P_GC_LC_3  
B8  
IO_L6N_GC_LC_3  
IO_L7P_GC_LC_3  
B10  
B14  
A14  
C11  
B11  
Y6  
B17  
IO_L7N_GC_LC_3  
IO_L3P_GC_LC_3  
IO_L7N_GC_LC_3  
IO_L3P_GC_LC_3  
A17  
C14  
IO_L3N_GC_LC_3  
IO_L4P_GC_LC_4  
IO_L3N_GC_LC_3  
IO_L4P_GC_LC_4  
C15  
AF11  
AF10  
AE14  
AE13  
AE10  
AD10  
AD17  
AD16  
AB17  
AC17  
IO_L4N_GC_VREF_LC_4  
IO_L5P_GC_LC_4  
W6  
W11  
W10  
Y7  
IO_L4N_GC_VREF_LC_4  
IO_L5P_GC_LC_4  
IO_L5N_GC_LC_4  
IO_L6P_GC_LC_4  
IO_L5N_GC_LC_4  
IO_L6P_GC_LC_4  
IO_L6N_GC_LC_4  
IO_L7P_GC_VRN_LC_4  
IO_L7N_GC_VRP_LC_4  
IO_L3P_GC_CC_LC_4  
IO_L3N_GC_CC_LC_4  
W7  
Y10  
Y9  
IO_L6N_GC_LC_4  
IO_L7P_GC_VRN_LC_4  
IO_L7N_GC_VRP_LC_4  
IO_L3P_GC_CC_LC_4  
IO_L3N_GC_CC_LC_4  
Y12  
Y11  
Virtex-4 LX/SX Prototype Platform  
19  
UG078 (v1.2) May 24, 2006  
 
       
R
Detailed Description  
Table 9: Breakout Clock Pin Connections for FF1148 and FF1513  
FF1148 FF1513  
Pin  
Number  
Pin  
Number  
Label  
Clock Name  
Clock Name  
IO_L4P_GC_LC_3  
E13  
E17  
IO_L4P_GC_LC_3  
J21  
J20  
IO_L4N_GC_VREF_LC_3  
IO_L5P_GC_LC_3  
IO_L4N_GC_VREF_LC_3  
IO_L5P_GC_LC_3  
K18  
M21  
M20  
L20  
IO_L5N_GC_LC_3  
IO_L6P_GC_LC_3  
K17  
IO_L5N_GC_LC_3  
IO_L6P_GC_LC_3  
E16  
IO_L6N_GC_LC_3  
IO_L7P_GC_LC_3  
F16  
IO_L6N_GC_LC_3  
IO_L7P_GC_LC_3  
L19  
K19  
P22  
IO_L7N_GC_LC_3  
IO_L3P_GC_LC_3  
J19  
IO_L7N_GC_LC_3  
IO_L3P_GC_LC_3  
P21  
H19  
N22  
IO_L3N_GC_LC_3  
IO_L4P_GC_LC_4  
H18  
IO_L3N_GC_LC_3  
IO_L4P_GC_LC_4  
M22  
AG20  
AF20  
AL20  
AL19  
AH18  
AG18  
AL21  
AK21  
AJ21  
AJ20  
AK18  
AK17  
AG18  
AG17  
AE17  
AE16  
AJ19  
AK19  
AH19  
AH18  
IO_L4N_GC_VREF_LC_4  
IO_L5P_GC_LC_4  
IO_L4N_GC_VREF_LC_4  
IO_L5P_GC_LC_4  
IO_L5N_GC_LC_4  
IO_L6P_GC_LC_4  
IO_L5N_GC_LC_4  
IO_L6P_GC_LC_4  
IO_L6N_GC_LC_4  
IO_L7P_GC_VRN_LC_4  
IO_L7N_GC_VRP_LC_4  
IO_L3P_GC_CC_LC_4  
IO_L3N_GC_CC_LC_4  
IO_L6N_GC_LC_4  
IO_L7P_GC_VRN_LC_4  
IO_L7N_GC_VRP_LC_4  
IO_L3P_GC_CC_LC_4  
IO_L3N_GC_CC_LC_4  
20  
Virtex-4 LX/SX Prototype Platform  
UG078 (v1.2) May 24, 2006  
 
   
R
Detailed Description  
14. User LEDs (Active-High)  
There are 16 active-high user LEDs on the board. Before configuration, the LEDs reflect the  
status of the configuration mode pins. During configuration, the LEDs are in a high-  
impedance condition. After configuration, the LEDs are available to the user and reflect the  
status of pins D0-D7 and D24-D31 (corresponding to LED 0- LED 15). The LED  
assignments are shown in Table 10.  
Table 10: LED Assignments and Corresponding I/O  
Pin Number For Package Type  
LED  
0
After Configuration  
SF363  
U9  
FF668  
AD13  
AC13  
AC15  
AC16  
AA11  
AA12  
AD14  
AC14  
D13  
FF1148  
G13  
F13  
FF1513  
B16  
1
V10  
V11  
U12  
V8  
A16  
R22  
T23  
2
J21  
3
H22  
H13  
H14  
M20  
N20  
K14  
J14  
4
G15  
G16  
N24  
M25  
H15  
J16  
5
V9  
6
V12  
V13  
D6  
7
Available as user LEDs  
8
9
E7  
D14  
10  
11  
12  
13  
14  
15  
E14  
D15  
F6  
F15  
D21  
E21  
D26  
E26  
F16  
F11  
L14  
L16  
E6  
F12  
L15  
K16  
F25  
E15  
F15  
F13  
N18  
N19  
F14  
F26  
Virtex-4 LX/SX Prototype Platform  
21  
UG078 (v1.2) May 24, 2006  
 
     
R
Detailed Description  
15. PROGRAM Switch  
The active-low PROGRAM switch, when pressed, grounds the program pin on the DUT.  
16. RESET Switch (Active-Low)  
The RESET switch connects to a standard I/O pin on the DUT, allowing the user, after  
configuration, to reset the logic within the DUT. When pressed, this switch grounds the  
pin.  
Table 11 shows the INIT pin locations for the available DUT package types.  
Table 11: User Hardware and Corresponding I/O Pins  
Pin Number For Package Type  
Label  
SF363  
FF668  
FF1148  
FF1513  
RESET  
R16  
W24  
AP21  
AH23  
Note: Refer to the readme.txt file for implementation of this user pin.  
17. DONE LED  
The DONE LED indicates the status of the DONE pin on the DUT. This LED lights when  
DONE is high or if power is applied to the board without a part in the socket.  
18. INIT LED  
The INIT LED lights during initialization.  
19. Platform Flash ISPROM  
A 32-Mb Platform Flash In-System Programmable Configuration PROM (ISPROM) is  
provided on the board for configuration (see Table 12). Refer to Platform Flash ISPROM  
description.  
Table 12: Platform Flash ISPROM Configuration  
Label  
Description  
J46  
Provides power to the ISPROM. These jumpers must be installed for proper  
operation of the ISPROM.  
J45  
J43  
Sets the design revision control for the ISPROM.  
Enables or disables the ISPROM by placing the address counter in reset and  
DATA output lines in high-impedance state.  
J42  
J8  
Sets the ISPROM for serial or select map configuration.  
Selects one of two modes of CCLK operation:  
ISPROM provides CCLK (PROM CLKOUT)  
FPGA provides CCLK (FPGA CCLK)  
22  
Virtex-4 LX/SX Prototype Platform  
UG078 (v1.2) May 24, 2006  
 
             

Western Digital Computer Drive WD10EARX User Manual
Whirlpool Clothes Dryer GGQ8811PG0 User Manual
Wolfgang Puck Bread Maker BBME025 User Manual
Xantrex Technology Portable Generator XHR, XFR, XFR3 User Manual
Xerox Copier 7328 User Manual
Yamaha Motorcycle Breeze User Manual
Yamaha Musical Instrument Amplifier HY 10GII User Manual
Zanussi Freezer ZV 40 R User Manual
Zanussi Pasta Maker 178145 User Manual
Zanussi Washer ZWF 1022 User Manual